Because some cancer cells are inefficient in processing ketone bodies for energy, the ketogenic diet has also been suggested as a treatment for cancer.[59][60] A 2018 review looked at the evidence from preclinical and clinical studies of ketogenic diets in cancer therapy. The clinical studies in humans are typically very small, with some providing weak evidence for anti-tumour effect, particularly for glioblastoma, but in other cancers and studies, no anti-tumour effect was seen. Taken together, results from preclinical studies, albeit sometimes contradictory, tend to support an anti-tumor effect rather than a pro-tumor effect of the KD for most solid cancers.[61]
Avoid sweetened drinks. Drinks that are sweetened, whether artificially or naturally, will have little nutritional value and add lots of empty calories to your diet. Do not drink fruit juice or other sweetened drinks. Even natural sugars will increase your daily calorie intake and prevent weight loss. If you chose to drink juice, do not exceed 4 oz per day (1/2 cup). Instead of drinking sweetened beverages throughout your day, drink unsweetened, calorie-free beverages. Some beverages to avoid include:
It’s easy to get caught up on the “low-carb” part of the diet and not give enough attention to the “high-fat” part. Fat is what makes you full, gives you energy (when in ketosis), and makes food taste delicious. For most people this figure should be north of 70 percent of daily calories. Keep carbs under 20g, hit your protein goal, and eat fat until you’re full.
In a state of ketosis, your body breaks fat down in the liver and converts it into ketones to be used for energy. Fat doesn't generate an insulin response, so insulin levels remain stable. This makes it much harder to store excess fat, and easier to tap into body fat stores for energy. Not only will this allow you to maintain your weight, but it will greatly encourage weight loss.
On the ketogenic diet, carbohydrates are restricted and so cannot provide for all the metabolic needs of the body. Instead, fatty acids are used as the major source of fuel. These are used through fatty-acid oxidation in the cell's mitochondria (the energy-producing parts of the cell). Humans can convert some amino acids into glucose by a process called gluconeogenesis, but cannot do this by using fatty acids.[57] Since amino acids are needed to make proteins, which are essential for growth and repair of body tissues, these cannot be used only to produce glucose. This could pose a problem for the brain, since it is normally fuelled solely by glucose, and most fatty acids do not cross the blood–brain barrier. However, the liver can use long-chain fatty acids to synthesise the three ketone bodies β-hydroxybutyrate, acetoacetate and acetone. These ketone bodies enter the brain and partially substitute for blood glucose as a source of energy.[56]
Implementing the diet can present difficulties for caregivers and the patient due to the time commitment involved in measuring and planning meals. Since any unplanned eating can potentially break the nutritional balance required, some people find the discipline needed to maintain the diet challenging and unpleasant. Some people terminate the diet or switch to a less demanding diet, like the modified Atkins diet or the low-glycaemic index treatment diet, because they find the difficulties too great.[42]

In Asia, the normal diet includes rice and noodles as the main energy source, making their elimination difficult. Therefore, the MCT-oil form of the diet, which allows more carbohydrate, has proved useful. In India, religious beliefs commonly affect the diet: some patients are vegetarians, will not eat root vegetables or avoid beef. The Indian ketogenic diet is started without a fast due to cultural opposition towards fasting in children. The low-fat, high-carbohydrate nature of the normal Indian and Asian diet means that their ketogenic diets typically have a lower ketogenic ratio (1:1) than in America and Europe. However, they appear to be just as effective.[54]


The day before admission to hospital, the proportion of carbohydrate in the diet may be decreased and the patient begins fasting after his or her evening meal.[19] On admission, only calorie- and caffeine-free fluids[37] are allowed until dinner, which consists of "eggnog"[Note 8] restricted to one-third of the typical calories for a meal. The following breakfast and lunch are similar, and on the second day, the "eggnog" dinner is increased to two-thirds of a typical meal's caloric content. By the third day, dinner contains the full calorie quota and is a standard ketogenic meal (not "eggnog"). After a ketogenic breakfast on the fourth day, the patient is discharged. Where possible, the patient's current medicines are changed to carbohydrate-free formulations.[19]
There are many ways in which epilepsy occurs. Examples of pathological physiology include: unusual excitatory connections within the neuronal network of the brain; abnormal neuron structure leading to altered current flow; decreased inhibitory neurotransmitter synthesis; ineffective receptors for inhibitory neurotransmitters; insufficient breakdown of excitatory neurotransmitters leading to excess; immature synapse development; and impaired function of ionic channels.[7]
Conklin's fasting therapy was adopted by neurologists in mainstream practice. In 1916, a Dr McMurray wrote to the New York Medical Journal claiming to have successfully treated epilepsy patients with a fast, followed by a starch- and sugar-free diet, since 1912. In 1921, prominent endocrinologist Henry Rawle Geyelin reported his experiences to the American Medical Association convention. He had seen Conklin's success first-hand and had attempted to reproduce the results in 36 of his own patients. He achieved similar results despite only having studied the patients for a short time. Further studies in the 1920s indicated that seizures generally returned after the fast. Charles P. Howland, the parent of one of Conklin's successful patients and a wealthy New York corporate lawyer, gave his brother John Elias Howland a gift of $5,000 to study "the ketosis of starvation". As professor of paediatrics at Johns Hopkins Hospital, John E. Howland used the money to fund research undertaken by neurologist Stanley Cobb and his assistant William G. Lennox.[10]
The ketogenic diet is calculated by a dietitian for each child. Age, weight, activity levels, culture, and food preferences all affect the meal plan. First, the energy requirements are set at 80–90% of the recommended daily amounts (RDA) for the child's age (the high-fat diet requires less energy to process than a typical high-carbohydrate diet). Highly active children or those with muscle spasticity require more food energy than this; immobile children require less. The ketogenic ratio of the diet compares the weight of fat to the combined weight of carbohydrate and protein. This is typically 4:1, but children who are younger than 18 months, older than 12 years, or who are obese may be started on a 3:1 ratio. Fat is energy-rich, with 9 kcal/g (38 kJ/g) compared to 4 kcal/g (17 kJ/g) for carbohydrate or protein, so portions on the ketogenic diet are smaller than normal. The quantity of fat in the diet can be calculated from the overall energy requirements and the chosen ketogenic ratio. Next, the protein levels are set to allow for growth and body maintenance, and are around 1 g protein for each kg of body weight. Lastly, the amount of carbohydrate is set according to what allowance is left while maintaining the chosen ratio. Any carbohydrate in medications or supplements must be subtracted from this allowance. The total daily amount of fat, protein, and carbohydrate is then evenly divided across the meals.[37]
The low glycaemic index treatment (LGIT)[49] is an attempt to achieve the stable blood glucose levels seen in children on the classic ketogenic diet while using a much less restrictive regimen. The hypothesis is that stable blood glucose may be one of the mechanisms of action involved in the ketogenic diet,[9] which occurs because the absorption of the limited carbohydrates is slowed by the high fat content.[5] Although it is also a high-fat diet (with approximately 60% calories from fat),[5] the LGIT allows more carbohydrate than either the classic ketogenic diet or the modified Atkins diet, approximately 40–60 g per day.[18] However, the types of carbohydrates consumed are restricted to those that have a glycaemic index lower than 50. Like the modified Atkins diet, the LGIT is initiated and maintained at outpatient clinics and does not require precise weighing of food or intensive dietitian support. Both are offered at most centres that run ketogenic diet programmes, and in some centres they are often the primary dietary therapy for adolescents.[9]

Infants and patients fed via a gastrostomy tube can also be given a ketogenic diet. Parents make up a prescribed powdered formula, such as KetoCal, into a liquid feed.[19] Gastrostomy feeding avoids any issues with palatability, and bottle-fed infants readily accept the ketogenic formula.[31] Some studies have found this liquid feed to be more efficacious and associated with lower total cholesterol than a solid ketogenic diet.[18] KetoCal is a nutritionally complete food containing milk protein and is supplemented with amino acids, fat, carbohydrate, vitamins, minerals and trace elements. It is used to administer the 4:1 ratio classic ketogenic diet in children over one year. The formula is available in both 3:1 and 4:1 ratios, either unflavoured or in an artificially sweetened vanilla flavour and is suitable for tube or oral feeding.[51] Other formula products include KetoVolve[52] and Ketonia.[53] Alternatively, a liquid ketogenic diet may be produced by combining Ross Carbohydrate Free soy formula with Microlipid and Polycose.[53]


There are many ways in which epilepsy occurs. Examples of pathological physiology include: unusual excitatory connections within the neuronal network of the brain; abnormal neuron structure leading to altered current flow; decreased inhibitory neurotransmitter synthesis; ineffective receptors for inhibitory neurotransmitters; insufficient breakdown of excitatory neurotransmitters leading to excess; immature synapse development; and impaired function of ionic channels.[7]
The purpose of the Mayo Clinic Diet is to help you lose excess weight and to find a way of eating that you can sustain for a lifetime. It focuses on changing your daily routine by adding and breaking habits that can make a difference in your weight, such as eating more fruits and vegetables, not eating while you watch TV, and moving your body for 30 minutes a day.
×